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The Completion Time of a Job on Multi-Mode Systems"

V. G. Kulkarnit, V. F. Nicola* and K. S. Trivedi$

Abstract

L

In this paper we present a general model of the completion time of a single job on a computer mys-

tem whose state changes according to a semi-Markov process. When the state of the system changes the

job service is preempted. The job service is then resumed or restarted (with or without resampling) in the

new state at, possibly, a different service rate. Different types of preemption disciplines are allowed in the

model. Successive aggregation and transform techniques are used to obtain the Laplace Stieltjes

Transform of the job completion time. We specialize to the ease of Markovian state process. Finally, we

demonstrate the use of the techniques developed here by means of an application.
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2* b

A computer system may change its state (e.g., its mode of operation) due to different events. The

system behaviour can adequately be described by a stochastic process, referred to as the 'structure-state

processu. Consider a job to be processed on such a system. The job service is preempted due to changes

in the state of the system, and may be continued or repeated at, possibly, a different service rate.

Clearly, the job completion time (i.e., the total time spent in the system to complete the job) is affected

by changes in the system operation. It is important to distinguish different types of service-preemption

interaction. In the preemptive-resume (pra) discipline, the job service is resumed from the point where it

was preempted. In the preemptive-repeat-identical (pri) discipline, the job is restarted from its beginning.

In the preemptive-repeat-different (prd) discipline, the job is restarted with a new work requirement

which is statistically independent, and identically distributed to the original work requirement.

Several authors have stpdied the job completion time in special cases. Gaver [4] and Nicola [9] con-

sidered a single server system subject to different types of Poismo interruptions. In their system a job is

serviced only in one state at a constant service rate. Castillo and Siewiorek [2] presented a model with

two types of Poisson breakdowns and repair. Puri [10] studied the distribution of the cumulative service

in the case where all preemptions are of the pra type; this is shown to be dual to the distribution of the

completion time of a given job [7]. Under Markovian assumptions concerning the system changes (i.e., a

Markovian structure-state process), we presented a detailed analysis in the cases where different, pure and

mixed, types of preemptions are allowed in the model 16,7]. In 15], Iyer et al. considered the computa-

tional aspects and developed a procedure for the computation of the moments of the cumulative service in

the case where all preemptions are of the prs type and the structure-state process is Markovian.

In this paper, we extend the results presented earlier to allow semi-Markovian system changes.

Furthermore, all types of preemptions may be present in the same model. This is a general framework

that includes all previous models as special cases, and extends the results to permit the analysis of fairly

complex systems. In section 2, we describe the mathematical model. The job completion time is analyzed

in section 3. We specialize to the ease where the structure-state process is Markovian in section 4. In see-

tion 5, we demonstrate the use of the techniques developed here by means of an application.

~~~~~~~~~~~~~~~~~~~~~~~...-............ .....,... .. .-.. ....-............. ,..........-..........-. .....-- ,-.-..--.-.,,..--
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2. TI. Bueie Mede

Consider a job with work requirement B, to be processed on a computer system. The work require-

ment in measured in work units, e.g., number of instructions to be executed. Assume that B is a positive

random variable with cumulative distribution function G (r) - P (B < r ). The computer system can

be described by its structure-state process {Z(t ),t > 0), which is assumed to be a continuous time sto-

chastic process defined on the state space {0,1,2,...,u ). The work rate of the computer system is r, > 0

(units of work per unit time) when it is in state i. The state 0 is an absorbing "failure" state with

r=o 0. Each state in {l,2,...,) is assumed to be pre or pi" or prd, as defined in the previous section.

Let S(S 2 ,S3) be the set of all pra (pri,prd) states. Thus S1 ,S2 ,Ss is a partition of {1,2,...,n. We

assume that the structure-state process is stochastically independent of the work requirement of the job.

Every time the system visits a pri or prd state all the previous work is lost and the job is restarted.

Define T (z) to be the amount of time needed to complete a job with work requirement of z units; and

T to be the time needed to complete a job with random work requirement, B. We re interested in the

distribution of T under the assumption that the job starts being processed immediately after the trmi-

tion of the structure-state process to the initial state.

Define the distribution functions:

F,(t,jr)-P-(T(r)< t Z(0)=i), tz >0, 1 < i < n

F(t,z)= P(T(z)<t), t, _ 0

Fi(t)-P(T < t iZ(O)=i), I < < t >0

F(t)- P(T < t), I> O.

Define the LSTs*:

Fi (#,z)=E(e-'r()Z(O)=i), r > 0,1 < i < n,

F (.,l)E(e-()) 4 - tF," (,.)P(Z(0)=i), 0 >0

F" (s) -E(e "  I Z(O)-) =fFi(,z)G(z), 1< <.
0

S) deotes the laplace Skelties Trasftorm (LST).

• 4 .. -.-. .- ..-.- ,-.% . . . ,. . . , , - , , .• . . .• .- . . ,• . . ,- . .- . -. .
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F (a) - E(.-.) - Fi (. )P(Z(O)-i).

It is clear that F" (s ,z ) and Fj" (a) are the key quantities in the analysis of T. In the remining

analysis, we make the asumption that {Z(t),t > 0) is a semi-Markov process (SMP). Let H be the

holding (sojourn) time in the initial state, i.e.

* min(t > O:Z(t) Z(O)).

Let

Qq(z) P{H < z;Z(H+)=jIZ()=i}, o< i,j <5,

be the distribution of the sojourn time in state i, given that a transition to state j took place.

Q (z) = [Qi, (z)] is called the kernel of the SMP. Let

*i Q()- EQ(z), I1< i < a,
j-O

be the distribution of the sojourn time in state i, and define

00

Qij (s) f e' dQ 1 (,)
0

and

00

Q(.)= f -'dQ, (z).
o

* 3. The Anslye4 o .1 ii Csmocties Time

In this section we describe a systematic procedure to derive the distribution F (t) of the job comple-

* tion time T. The method of analysis is best described as "progressive aggregation". To begin with, we

" study the structure-state process restricted to move only in SI, then we study it restricted to S, U S2,

and finally we study the general case, when it moves freely in SI U S2 U S3-

:' . . . . . . . . . . . . . . . . . .. ..... .. . .. .."
-.-.--. ..- : -.,-. - .,-.' ,'.'.. ..- .- '-. -.-. , , ... ..-.-. . . ,.'. .. ...... ". :.. ..-, -'. .-. .- -. ....'t_ --. .,- --, -,- -'-



* 3.1. The Analysis ofthe Comple tion Time in the pro Set of States

Suppose the structure-state process is initially in S1 and let

U, - i t>OZt tS)

*Thus, U, represents the first time the structure-state process visits a preemptive repeat state or the

absorbing failure state. Now consider a job with work requirement x; its job completion time is T(z). If

T (z) 5 U, the job completes while the structure-state process is still in S, if T (z)> U, the job has to

be either restarted in a state in S2 U S3 or the job is never completed due to an absorbing failure. Define

MI.i(e ,z) = eT(M;T(z) <U, IZ(O)=i), i GS,

*to be the LST of the Job completion time T (r) when the job completion takes place before the

* structure-state process leaves the set 5,. Notice that Made,z) is the LST of a possibly defective ran-

domn variable, since P (T (z) U, z Z(0)- ) <I.

Define, for i CS, and SI,

M I,,d(s:)x E (eU ;T(z) > U,,Z (U,+)-j Z (0) i), i G S, S 1 S.

* When the structure-state process starting in i GCS1, leaves S5I before the job completes and enters state

tt j I5, the LST of the total time spent in the set S, is given by MI ,w).f Now let*

M,il(.,W) f s "MI,(e ,z )dz, i CS,
0

and

1,.4( J ,o = e M,,,(e,z )dz, i C 5,, 4t S15.
0

The theorems below give the equations to obtain the above quantities.

* Theorem .1. The double transforms MI,'(* ,IV), i C_ 5,, satisfy the following equations

M~1a~t) =!~---[I-Q, (e+rjw)] - E Q (#+rji)M.&I(.,to), i CE S1.()

4 Proof. Conditioning on H, the sojourn time in the initial state, we get

()denotes the LA9Imete tiaseform.



e''''/', ifk A> z /r; "

E(e"T(a);T(z) U , IH--A,Z(O)zi)= e_ ) M4h(ez-,), jf, < z/,.

Unconditioning on H, we get

M3 ,(e,,) f ,/"dQ,(h)+ E J e A'Mi(ez-rh)dQa(h)
a/r hES t ,1 a

i e-"'/(i-Q,(z/r,)) + f e-'tMk((,z-rjh)dQk(h).
kes, 0

Multiplying both sides by e-' and integrating, we get

00 Go
* M;(~,t,)=fe-" -1 " O(l -Q,(z/r,))dz + f e-w f e-"&M (sz-rih)d i&(h)d.

o ES1 0 0

which yields equations (1). Q.E.D.

Theorem f. The double transforms MA.',(a ,W), i GSI, j 9 S, satisfy the following equations

M1Af ,) . (e +r Wv) + E Qa(e+riWW)AflA,(S ,t), ieS 1 , i~s 1 .(2

Proof.- Conditioning on H, the sojourn time in the initial state, we get

E(c-U;T(z) > UI,Z(U,+).- - I H=h ,Z(O)=i)

ilk <x/ri and Z(A)=jj- Sj{ 1
if., , h <z/ri, and Z(k)-k GS.

Unconditioning on H, we get

M1 ,,(e ,x) =f e~ dq,,(h) + f c- M1 ,&, ,-r, A)dQ& (A)

Multiplying both sides by e and integrating, yield equations (2). Q.E.D.

Remark. If the structure-state process is a CTMC, the above theorems yield propositions 5.1 and 5.2 in

17].j
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Equations (1) and (2) can be solved to get Mi~i(.,w) and M',,(aov), iGS 1 , itS 1 , which

can be inverted with respect to w to obtain Mi,(s ,s) and M1*,(s ,z), respectively. If the structure-

state process is a CTMC, this inversion can be carried out rather easily [7].

The quantities M (s ,z) and Mi,j(s ,z ) completely describe the job completion process while the

structure-state process is in S1. Using these quantities we can analyze the job completion process while

the structure-state process is in S 12 =SI U S2.

3.2. The Analysii of the Completion Time in the pro-pri Set, of State.

Suppose the structure-state process is initially in S12 (i.e., in S1 U S 2 ), and let

U 1 2  min {t >O:Z(t) i S1 2 ).

Thus, U12 represents the time until the structure-state process visits a prd state or the absorbing failure

state. Now consider a job with work requirement r; its completion time is T(z). If T(z) :_ U12 , the

job completes while the structure-state process is in S 12. If T(z) > U12 , the job has to be either res-

tarted in a state in S3 with a resampled work requirement or the job is never completed due to an absorb-

ing failure. Define

M1,(2,z) E(e-(&);T(z) < U12 1 Z(O)= ii, iES 12 ,

to be the LST of the job completion time T (r) when the job completion takes place before the process

leaves S 12. For i ES 12 and j S 12 , define

MAf J ,=(s x) f E(e ';T(z) > U12,Z(UI 2+) j IZ(O) C 1i), i S 2 , j4S 12 .

When the structure-state process, starting in i GS 12 , leaves S 1 2 before the job completes, and enters a

state S1 2 , the LST of the total time spent in the set S12 is given by Mit .12(e ,z ) . Now let

,' ( ,,) - e-"/,(i-Q,(z/r)) + f e'MI.k(e,z-rh )dQik(h), iS 2
best 0

and

- A~(,z)- f e"dQi,(A)4. f e" M1 5 (~-jadj ) idj GS 2.

o hf S 0

Z A' " . - - ,- , - , - o - o . o ' ' . " .o ' , o . o . . ' , - . - . -o -• " . . " . - . % " . °



*The next theorem provides a method of computing the LSTs9 M 12.i(s xg i S 12.

Theorem S.

* a) The conditional LSTs M12, (a ,x), i £ S2, satisfy the following equations

* M 12,i )~ (8 ,Z + F , ki( ,Z )M1 2J(a ,X), G:S 2. 3

* b) The conditional LSTs M12,.(a,:), i cSi, are given by

*MW 2 ,AS A) =MIA,,( Z) + M1,,,2 ( ,Z )M 1J(a ,z, E (4)

Proof.

a) Let r=£S 2 be the initial state. Conditioning On the sojourn time, H, in the initial state, we get

E(e-' T (') ;T(z) :5 U12 1I Z(O)=a,H=Ia)

M1fk S/t

+,& (s (.z -ri A)+ M 1 1 1 (a,x -rih)MI2J(8,:)), if k < z /r,

* Unconditioning on H and rearranging yields equations (3).

b) Let i G:S~ be the initial state. Then

*-E(c-
T (');T(z) U, IZ(O) i) )+ E(cDT();UI < T(r) <U 12 jZ(O)= )

* It follows that

-MIU(s ,x) =M 1 ,i(a ,z) + E(eU1 ;T(zT) > U1 ,Z(U 1 +) =jIZ(O) =i) M12 J(8 'r)
irMS2

*which yields equations (4). Q.E.D.

Remark It the structure-state process is a CTMC, the above theorem produces theorems 5.1 and 5.2 in

17]. U

S* * U* *7-



The next theorem provides a method of computing the LSTs M12,,*,(e ,z), i ES 12, j S 2. First, define

a~r, a/i'

aii(.,z) f e-.dQ,(h)+ E f c-MkJ.(s ,z-ri,h )dQik (h), iCS2, i S1 2
0 hES1 0

and

b , (,) f e dQj (h) + f c-*MI..,k(8,z-rj,)dQ,. (h), i,k CS 2 .
0 M e s, 0,.

Theorem .4.

a) The conditional LSTs A 12 ,(AS ,z), CS 2 , jS12, satisfy the following equations

M1,.,(ar) 7 a,;(8,r) + , b, (S ,X )MI2,k(8 ) C.S 2 , jes . (5)
k ES 2

b) The conditional LSTs Mi, 4 (a ,z), CSi , I S12, are given by

M12 ,(a ,i1 M ,. ,z ) + , M1 ,.*(a ,r),AI 2,,,(8 ,Z), i s£ , O eS12. (6)

* Proof.

a) Let 1S 2 be the initial state and j ¢S1.2 Conditioning on H, the sojourn time in the initial -

state, we have

"'*: E(e -u';T(z) > U12,Z(U1 2+) = j I H= ,Z(O) = i)

ifh < r/r; and Z(h )=j S 12

M 2 ,,i s ,z), if h < z/r and Z(h)-k .2

e' [Ms.I,j(e ,z-r, h )+ MI'&,,(8 ,z-r h )Af.,,,( ,z )], if h < z/r, and Z(h )=k Ss.1 *E 52 .

Unconditioning on H, yields

M 12,,i(s,r) f e"dQj(h)± f e-A"M2k,i('X)dQi (h
0 h£S2 0

S/r

"+ E If e-"MIi,,j( ,z-r,h)dQa(h) + eAM,&,.(. ,X-r h )M, 2 ,,(S ,z)dQik(h. ."

bES, 0 MES2

Rearranging yields equation (5).

% .. . . . -. . . .. '... ~
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b) Let i eS 1 be the initial state and j $S,,. Then

E(e-'Um;T(x)> U,2,Z(U, 2 +)-j I Z()=i)

E(e-U;T(z)>UI,Z(U+)-j I Z(O)=i)

+ E E(eU';T(z)> U,Z(U,+)==k Z(O)=i) E(c U";T(x)> UUrZ(U2+)- I Z(O)=-k).
bSrES

Rewriting yields equation (6). Q.E.D.

The stochastic properties of the job completion process while the structure-state process is in S 12 are

completely described by the quantities M 1"i(e ,x) and Ml',.i(* ,z), ESI 2, j itS2. Knowing theser

quantities we can determine the distribution of T, the job completion time, as will be shown in the next

section.

3.3. The Analysis of the Completion Time in the prsepri-prd Sets of States

In this section we describe the method of computing the LSTs F " (a), i GSI U S2 U Sa. The

main result is given in theorem 5. First, let us make the following definitions. For i GS 3

- g,(8) fe"/"(1-O (z,/ri))dG (z)
0

00

+ , fM, k(s,z)( f e 5 dQu(A))dC(z)
"ES 2 0 0

+ k f )dQis(A)dG(z).
IES3  00

For i,j GS3
Go

- ,(s)-f f e',Q,(h)dG (z)
0 0 i .

+ E fM ,,12 ,(s,r)( f e dQ 5 (A))dG (z)
;es 5 o 0

. . . . . .. . . . . . . . . . . . . . . . . .-. .



.7.

00

+ f f M, 1 ez-hdj(A Cz)
hES'O 0

*For i SSIU S 2

00

and

00

M M,*(8) fM Ii, i(8 ,zdGz) S I U S2.
0

Theorem 5.

a) The LSTs of job completion time, F1 (a, for eCS5 , satisfy the following equations

*b) The LSTs of job comipletion time, F1 (a) for i r=S, u S 2 aref given by

*F, (a)- M,21i.) + E M 1 ,1()F 1 (8), i-SU S2.()

Proof.

* a) Let i FSs be the initial state. Conditioning on H, the sojourn time in the initial state, and on

- the initial work requirement B, we have:

* E(e' T jB-z,H-h,Z(Ofri)

e -/'S ,if h > r,

C'~ Fk' (a) + C [ M1,kh(8,X) + M M,7h(a,z )F, (a )I
kGS8  hES 2  jS

*+ e IMzd I , ,z -rih) + M z,,,,(e ,-r h )F, (8)], if h < r

IN!

* Unconditioning on H, yields

-U. B zZ~)i

(I-Q (z /0
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+ E f •/r F(a )dQi()
hess 0

::: * ts

+ f f" e-[MI(,)+ I M12,J( ,z)F (s)]dQ(A)
"ES2 0 iES

+ f [Ik(S,Z-, A)+ MZ.k(a ,-ri A )Fj (sdQi, (h).
hes5 0 jr s

Unconditioning on the initial work requirement, B, and rearranging yield equation (7).

b) Let i GS 12 be the initial state. Conditioning on the initial work requirement, B, we have

E(e-'r IB=z,Z(O)=i)

-=E(c-'T;T 5 U J IB-=z,Z(O)=i)

+ E(e-'VU ;T > U,2;Z(U,2+)=j IB==z,Z(O)i)E(4 T I Z(O)-i)

=M 12i(,,) + E M ,.i(,,) r;"(,).

Unconditioning on B, yields equation (8). Q.E.D.

Theorem 5 provides the 1ST of the job completion time given the initial state. We recall that the

job starts being serviced upon the transition of the structure-state process to the initial state.

The procedure to compute the distribution of the job completion time can now be stated as follows:

1. Obtain Mui(s ,w), i GSI by solving equations (1).

2. Invert Mli(s ,w) with respect to w to obtain M ' ,(s ,z), is .

3. Obtain M 1 ,( ,( w), i CS, , j € SI by solving equations (2).

4. Invert M i* (s,w) with respect to w to obtain M ,j(s ,r), iGS, j S 1.

5. Obtain M 12,A(e ,z), iS 2 , by solving equations (3).

6. Compute M2(s ,z), i S 1 , by using equations (4).

7. Obtain M124.1(8,,), iES 2 , j S12, by solving equations (5).

. . .o. . . . . .- - - -- - - - - - - ---.-.-.- -. , -- -. -,. . . , .,-- ,- '- ' , . . . . , . , o



8. compute M',2,,(& ,z), i ES, j ES12, by Using equations (8).

9. Obtain F" (8), i CSS3 , by solving equations (7).

10. Compute Fj (s), i ESn U S2, by using equations (8).

11. Compute F" (s ) -= rFi Js)P(iZO ).
I-I

12. Invert F- (#)to obtain F(t)=P(T<t).

It should be noted that for a general SMP the problem of inversion is quite difficult. In the next

section we illustrate the procedure for a simple system with a structure-state process that is a CTMC. In

section 5 we also consider an application with a semi-Markovian structure-state process.

4. A Specisl CG..: A Markovien Stmetws,-Sta Preu.

Consider a system with four structure states {0,1,2,3). State "0" is an absorbing failure state.

State "1" is pro, state "2" is p and state "3" i ,rd. Thus, S,- (1), S2 - (2), S3 - (3). The

structure-state process is a CTMC with X,, being the rate of transition from state 'i' to state'j'

(j i). The reward rates in the states "1", "2" and "3" are rl,r2 and rs, respectively. As state "0"

is absorbing, we have )o, -0, for all and r0 - 0. Let ), X ) k, be the total transition rate out

of state i".

We follow the procedure stated in section 3 to solve this example.

Step 1 8 2. Obtain MI'( ,u ) from equation (1).

-"--- tl-. +,.__,___],-." • rnS +,X

S+rl-u' a+rlwu,] a+rlvi+),

Inverting with respect to w, we get

pF

. * *......* . . .
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-. ,1 ,)= -' .' - ' *"'

where we have defined

.. *~i , i , ,.

*" Step 3 8 4. Obtain M1, 2 (o ,a w) and M1 ,,*s (a ,w) from equation (2).

M1,11(a ,W) Q12 (.+rW) -2

* ~ ~~ ~ w1 (~)Qae w w(s + 1w +X 1 )

11 , 1,( ,W ) Q " (a+"- +rl)' "Inverting with respect to wo, we get

12 F* Al1,1,2  Z ( +X~ 1-c

" s , ,:, l1 1, ,,)= (- ,...

Steps 5 6 6. Obtain M"I (a ,s) by solving equation (3).

"22 _ 2 2(e,z)

Now,

Q /- -)) f MI., (a "-r
2h )dQ21(8/? ,'

4. + , / P2 + -\2 e ). 1-4. (-)

0

where

* and

• .0 ' % *I



A~ (a ,z) - J 1 2 (a ,z-r )dQ21(h)
0

\1.2 ____ '(..f 10 (+~X-,)rj
0

(8-(,( +X2)e +X2)( rX) 2 ]

* Thus,

and

From equation (4), we hlave

* M~,1 (a,S) Mi1 (a ,z) +M'j 1.2 (a ,z)M,,(

*Step 7 8. Obtain M1 ,=3 (ISz by solving equat.ion (5).

*M122 3 (8A ,z 23(8 ,9) 22j(8 IS)MI,2,3 (8,.)

Now,

- f *.4ISQ4f e + f e-4AM 1 .a(s ,Z-rgh )1Q21(h
o 0

R93 O U + fL Jl

(8 +X )0

df ~ Y * * ** * **
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P'..(. + )}+)1s(,-e :)-1X113r I(' +).2.X -c 2)/r

22(f ,A) f 0 M" (S,2( ,-r 2h )dQ 21(A)
0

el/r,

* 2±. 4. e+AJ. + ,a,tldA

= {0+x---- I ---

\2\2 jr +r(a +X) g-r I(. +.\2)e 11
r (a +X1)(S +\2)

Thus,

22L.(s ,zs r Ksa +\IXe +' 2 )- 12 .211-. 12-\21 fr2(a +h3)e 2-rj(S +X2)C 11
r (a +XIX +X2 )

and

M 12A3 (a 's f; .( ,: ) 1-_4I(. ,z)]

r JAN(. +XIX1-e2)+- 2 1lJiI\Iz.frj(. +\ I)er-u1( + 2 )C 11
r I( * + .xjX * + .\2) \ SXs~ + AjX~sx if' ( * + .\) e- -r2, o + .\,) e :

From equation (6), we get

M 12,,. ( ,(S) - M 1, (S ,) + M11, (a , )m ( ,:)

1-,)
-*(8 +A [xx, ( , ]

Steps 9 10. Obtain F 3" (s) by solving equation (7).

*FS (S 3ag(4)+h (S F1 A? (f)

) i-h (. SAS
* Now,

#()- ei f -"(Q,( /r,))dG (r)
0

+f I m (S M ,,z)dQ82(h )dG( )
0 0
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+ f f e-"MgI (a's -r& )4Qsl(h )dG (s)
0 0

0

+ X32f f a + +)6jkM12 2 (s,z)d& 40(s)
0 0

+ ~ f e ~~' 12.1,(a -rsh )dh ()
0 0

C3 -f3_(1-a 3)MI2,2 (aix )40(z) + \ 31f f c' + M1z. (a ,z -TEA)dh dG (z)
(a +1\3) 0 0 0

with

a,- G-((@+).)z/rj) =f Jc+ 'ndG(z) = 1,2,3
0

and

Agsa) -f f C.SM- 3 a)QA4Gz e~ 1 1,g(s,z-rgA)4Q 31 (A)4G(z)

00 0 a0

Go O/P go /Pg

-\32uf f 9 + 8)Mig(@,*)4s d0(s)+)\slf f c+ "Ml~ 1 s(*,z-rh)dA d0(s)

00 0

)63 PIC )M 2.$ ( x)dG(z+ -\31f f c"9 M,~j1 (s,z-rsh)dh d0(z).
( X)0 0 0

Thus,

Is($)F3 (a 11f-h 33(a)A

(a +).g)e +)s32ftl-e)Mz 2 (a ,z)dG (z )-\3X(a +)ha))f f 9 ~~Ma1ai(a ,S-rsh )dh 40(z)
0 0 0

0 0 0

* From equations (8), we have

4 Fl MA,()+M'j.*(.)F' a

and



Clearly,

F (a j P(Z(O)mi)Fj (s).

* 5. An Appfication: A Spasm wMt Two Tpe of &.eakdewn sid Repair

Consider a job to be executed on a computer system. The system is subject to three types of Pois-

- son failures:

1) Preemptive-resume (prs) failures, which occur only when the system is operating normally, i.e., in

state "I", at arate X12. Following a pro failure the system undergoes a breakdown period, of a gen-

*eral distribution R2(z) and LST R2 (s) after which the interrupted job resumes service.

2) Preemptive-reireat.ifferent (pri) faures, which occur when the system is either operating normally

or undergoing a pro breakdown period, i.e., either in state "1" or in state "2", at rates Xis and XU,

respectively. Following a prd failure the system undergoes a breakdown period, of a general distri-

*bution R 3(x) and LST R3 (a) after which a new independent job with work requirement distribu-

*tion G (z) is restarted.

*3) System failures, which occur in any state of the system operation, i.e., states "1", "2" and "43", at

rates X10 ). and XgD, respectively. These are absorbing failures. A state transition diagram

representing the system is shown in figure 1. In this case we partition the states as follows (in accor-

* dance with section 3): the pra set, S,={l,2), and the prd set, Sa=(3). Note that S2 is an empty

set, since there are no pri states. Obviously, we set r -I and r2==rs==.

hn order to obtain the LST of the job completion time, F I'(s)we follow the procedure in section 3.

Let H be the holding time in the initial state, then

Q,,(s) - P(H :5 g;Z(H+) - iw 12(O)- 1), j-,2,3

and

%9
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Q(z) =P(H < x I Z(O) 1)- Qgdz) + Qd) + Qs().

Let ) = X10 + Xn + Xa, then from the Poisson property of the different types of failures, it follows that

Qli 7+ jm\ -O,2,3

and

Q1 (8) -

step. 1 S 2. Obtain Mi., 1 . ,w) and M' 2'(s ,w) from equations (1).

M,- i-Q (a+W) .
°M1 (a +W) .a(

*+:"

18'l,W) - O . ,'1,W). [

It follows that

Mi,' ,so ,) -is +so +.\,-x, 1 )l' -

Inverting with respect to w, we have

M1, (° ,s) :=-.+4. 1 .1 1 )J

and

M' 1.(8 ,) Q 21 (a )M ', (.,z)= Q'1 (s 1 4S QQ (.2(.

Step 858 4. Obtain M1, 5 1( ,w) and M $.3 (a ,w) from equations (2).

, ' + Q (s +W)Mus (8,W),

. , - + Q21 (S)M 1 ,1 (a,0w).

It follows that

M(au W )X1+)1gQU (s)
W 1, +W +X.-XI WI
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Inverting with respect to w, we get

3+)13Q (a)4Q1 O

and

M1,.3(8,S)- QU s) + Q21 (eM.aa3(a,r)

(S +)\)Q23 (a) + >-1Q2 (19)-Q21 (a )[)-13+1\12 Q23 (, 5 4lSQ (e)JN = a+.\,- 12Q21 (a)

Steps 5 6 6 5 7 5 8. Since S2 iS an empty set, it is clear that

* Myzi~s (a ,z) =M 31,8(a z),

F (a)=g()AaF ()

* where

00 00

938) f f 9--"Ml',,(e,z)dQsl(h )dG~z
0 0

Mj1 (8)Q;, (a)

* and

00 00

* h3(s)= f fe-" MLIj,s(s,z)dQ31(h)dG(Z)
0 0

=M 1 1 .)Q 1 (a),

with

J6.
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00

" ~, (a) - f Mj ( ,s)IG (s)
0

-G (a +.\,-.\,2Q21 (f))

* and

M1 .1.3 (a)-fMI1,3 (a ,z)dG (z)
0M .Ls ( )1 1 M +>1(1, Q ( )

f( X>-X 2Q21 ( 2)

It follows that

uMo)
FS (a)- 1-h,(o)

IQS (8 WU.,3 ()

From equation (8), we have

F1 () M. 1 (S) + M 1 ,.()F, ( )

M1.1 (s)
M-Q3 (8)M11. (S

G- (S +-\1-1\12Q2 (1)Q 31 ('1 XI\13+-1Q 2 (°)s

8 +X'1-j 2 Q2 (.)[-G( +X1-- 12Q21 ( ))]

Now, let us determine the LSTs Q31 (s), Q21 (s) and Qg2 (s). We have

Qu(z)- P(H < r ;Z(H+) = IZ(O) 3)

f

0

Thus

Go

0
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uf mC'N'dRs(z)umR (s +X)).

We also have

=~(X P(H :5 z;Z(H+) = I Z(O) =2), j=,1,3.

Then

Q21z)= f C( +~)dR2 (e)
0

and

cc

Q21 (.) f e-"dQ2i(Z)
0

OD

=f C-MC-ed dR 42 z) R 2 (e )+X3)
0

Similarly,

Q, (s) = ) ~ ~ (1-Rao(t)
0

* and

0

=23 -Q*+) [1Rz)d
0

x~2s

Let -\2 = ) + XM. and \ 3 = )o. Then substituting in F, (e),we finally get

* F (e = .+x)p~. G (+),,. 12R~ (+\2))

In the case where system failures may not occur, i.e., XL0 X)~ Xao 0, and X13 X23, the above Ss-

tern corresponds to a model considered by Castillo and Siewiorek 12). In this came F I (s)reduces to

* 'C . .* ,
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F ()(8 +'\13 )G (8 + 1-'\ 12R 2 (+XIS))
(a +Xi3)-X18 R3~ (s)[1-G (8 +\q-.\12R 2 -(s +\1))]

Furthermore, if the job service requirement is deterministic and equal to v (i.e., G (e) e) then

F1  a )(8 +X 13) 1 X2R;

The mean completion time of a job, E (T), is given by

E(T) -F1 ' (0) +~ I E(R)] [C V I-XI 2R 2 (~)

where E (R 3 ) R-3- (0), is the mean of the breakdown period after prd failures.

6. Ceacls~iONa

We have presented a general model for the analysis of job completion time on a system subject to

changes in its structure due to different events. The system behaviour is described by a serni-Maukov pro-

* cess. A change in the system operation preempts job service which may later be resumed or restarted

* (with or without resampling) at, possibly, a different service rate. We have derived a procedure to obtain

* the distribution of the job comnpletion time. A closed form expression for the Laplace Stieltjes Transform

* of the job completion time is obtained in special case. In the general case we resort to numerical tech-

* niques; this is an open problem for further research. In this paper we have restricted our attention to the

* execution of a single job on the system. The obvious extension to the case where an additional delay may

* be experienced due to queueing is being investigated.

J10
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